An Overview of NCD's Risk Assessment Process

James W. Cox Senior Biologist New Chemicals Divison Office of Pollution Prevention and Toxics

> Global Chem Conference PMN Workshop March 25, 2024

NCD Risk Assessment / Management review process

Office of Chemical Safety and Pollution Prevention

Risk Assessment Overview

	Understanding	Exposure	
Chemistry	Occupational	Understandin	ng Hazard
Fate	General	Human Health	
Environmental Release	Population Consumers	Environmental Organisms	
	Environmental Organisms		Determining Risk
		-	Human Health
			Environmental Organisms

Purpose

- This presentation will focus on the risk assessment process for new chemicals, examining the following disciplines:
- Pre-screen review
- Chemistry review
- Engineering (Environmental Releases and Occupational Exposure)
- Environmental Fate and Transport
- Environmental Exposure (Non-Occupational)
- Environmental Hazard and Risk Assessment
- Human Health Hazard and Risk Assessment

Note: This presentation is primarily extracted from EPA's Points to Consider document: https://www.epa.gov/sites/production/files/2018-06/documents/points_to_consider_document_2018-06-19_resp_to_omb.pdf

Information Manufacturers Must Submit

- Chemical Identity
- By-products and impurities
- Estimated production/import volume
- Proposed uses and amounts for each use
- Human exposure information
- Disposal methods and estimates of releases to the environment
- Existing test data in notifier's possession or control (or otherwise reasonably ascertainable) concerning human health and environmental effects

Engineering Pre-screen Process

Engineering Pre-screening¹ of PMN submission is performed to determine if submission is complete with regards to engineering information as per the **40 CFR § 720.65(c)(1)(vi)**:

> A submission is not complete, and the notification period does not begin, <u>if the submitter does not provide information required on the</u> <u>notice form and by § 720.45 or indicate that it is not known to or</u> <u>reasonably ascertainable by the submitter.</u>

- Pre-screening review is limited to whether information that is required per the **40 CFR § 720.45**, such as process description, identity of sites, worker exposure, environmental releases, and controls, is included in the submission or not.
- Pre-screening review does **NOT** involve confirming whether supporting information/documentation is provided NOR any evaluation to determine, if information/documentation is acceptable. This more detailed review is performed during the engineering assessment of the case.

ONCE ACCEPTABLE, REVIEW STARTS WITH CHEMISTRY

Chemistry Assessment

Check for chemical/case history/Inventory status

- Evaluate chemical and physical properties (e.g., boiling point, melting point, vapor pressure, water solubility, and Kow values)
- Provides insight into hazard, fate and exposure
- Measured preferred, estimated with Estimation Programs Interface Suite (EpiSuite[™]) where data are lacking
- Evaluate synthesis; including residuals and impurities
- Review provided uses(s), compare with any existing uses, and identify other reasonably foreseen use(s)
- Identify pollution prevention opportunities and benefits
- Preference: Chemical-specific test data >> Analogue data > Modeled data

ENGINEERING ASSESSMENT

Engineering: Environmental Release

- Evaluates when and where the chemical is released to the environment: Manufacture (or import), processing, distribution, and use for land, air, water
- ChemSTEER -Chemical Screening Tool for Exposures and Environmental
 Releases
 - o Estimates industrial and commercial releases for a chemical
- Generic Scenarios / OECD Emission Scenario Documents: Documents containing information about specific industrial or commercial setting and models and assumptions for estimating releases

Engineering: Occupational Exposure

- ChemSTEER is used to estimate workplace exposures (inhalation and dermal)
- Generic Scenarios/OECD Emission Scenario Documents: Documents containing information about specific industrial or commercial settings and models and assumptions for estimating worker exposures
- Other data sources (ex: OSHA Permissible Exposure Limits, ASTM method for glove permeation testing, NIOSH guidance on nanomaterials, and other published literature)

FATE ASSESSMENT

Environmental Fate Assessment: Purpose

- Characterize environmental partitioning
- Identify the persistence and bioaccumulation potential:

	Limited Persistence (P1)	Persistent (P2)	Very Persistent (P3)	
Persistence	< 2 months	2 to 6 months	<u>></u> 6 months	Half-life
	Low (B1)	Moderate	High (B3)	
		(B2)		

- The higher of the bioconcentration factor (BCF) or bioaccumulation factor (BAF) is provided for use in the Exposure assessment; however, when the models disagree EPA considers the applicability of each model including factors such as metabolism
- Exceptions to the persistence and bioaccumulation scoring system are made as appropriate
- See <u>PBT policy</u> documents (<u>https://www.epa.gov/reviewing-new-</u> <u>chemicals-under-toxic-substances-control-act-tsca/policy-statement-</u> <u>new-chemicals</u>)

Environmental Fate Assessment: Approach

- Review structure, physicochemical properties, and structural alerts:
 - Potential for degradation via biodegradation, hydrolysis or photolysis
 - Structural fragments that may affect metabolism (e.g., esters)
 - Fugacity models based on equilibrium parameters give indication of potential partitioning in WWTPs and the environment
- Review submitted environmental fate test data
 - Most new chemical submissions do not contain degradation or bioaccumulation data
 - Non-guideline studies may be acceptable if sufficiently conducted and documented
 - If an analogue with test data is submitted, provide:
 - Rationale for consideration of the analogue
 - Chemical name, structure and CAS numbers of analogue(s)
 - 40 CFR 720.50 (a) requires complete reports or standard literature citations on the new chemical
- EPA frequently uses modeling to estimate environmental fate endpoint values in the absence of reliable & relevant data
 - EPISuite[™]

EXPOSURE ASSESSMENT

Environmental Exposure Assessment

- Identify concentrations of the chemical in environmental media, typically using the Exposure and Fate Assessment Screening Tool (E-FAST) model, for surface water in the absence of data; see <u>https://www.epa.gov/tsca-screening-tools/e-fast-exposure-and-fateassessment-screening-tool-common-questions-and-answers</u>
- Calculate an acute environmental exposure concentration for surface water
 - One day surface water concentration based on releases from one site and the 7Q10 flow for the receiving water body
 - 7Q10 : lowest 7-day flow over a period of 10 years
- Calculate a chronic environmental exposure concentration for surface water
 - Based on 10th and 50th percentile of flows for a site or a group of sites (industrial code)

General Population Exposure Assessment

Exposure to populations living near industrial facilities

- Drinking Water Exposures
 - Surface water concentrations resulting from water releases in the engineering report
 - Ground water concentrations resulting from landfill releases in the engineering report
 - Fish Ingestion Exposures
 - Fish tissue concentrations (mg/kg) result from the multiplication of surface water concentrations (mg/L) times the bioconcentration (L/Kg)
 - Inhalation exposures to communities living near industrial facilities that result from air emissions at industrial sites described in the engineering report

Preference: Chemical-specific test data >> Surrogate data > Modeled data

General Population Exposure Assessment (continued)

- Both E-FAST and the Integrated Indoor Outdoor Air Calculator (IIOAC) model are used to determine air concentrations for human receptors. However, E-FAST is usually run first (see <u>https://www.epa.gov/tsca-screening-tools/e-fast-exposure-</u> and-fate-assessment-screening-tool-common-questions-andanswers)
- If the air exposures for fugitive, stack, and incineration releases need to be refined, IIOAC may be used
- IIOAC is site-specific, uses more model inputs and parameters
- IIOAC is a higher tier model that has been used in the new chemical program to refine E-FAST air exposures (see <u>https://www.epa.gov/tsca-screening-tools/iioac-integrated-indoor-outdoor-air-calculator</u>)

Preference: Chemical-specific test data >> Surrogate data > Modeled data

Consumer Exposure Assessment

- E-FAST contains 6 consumer exposure models (CEM v 1.2)
 - Dermal and inhalation routes of exposure
 - Built with a representative household and pre-programmed consumer behavior patterns
- Expanded Consumer models in updated version of CEM (CEM v 3.2) in 2019 see <u>https://www.epa.gov/tsca-screening-</u> <u>tools/approaches-estimate-consumer-exposure-under-</u> <u>tsca#consumer</u>

ENVIRONMENTAL ASSESSMENT

Environmental Hazard Assessment Purpose

- Identify potential aquatic hazard concerns, using acute and chronic toxicity endpoint values
- Standard aquatic toxicity profile includes 6 endpoints:
 - Fish 96-hr LC₅₀
 - Daphnid 48-hr EC₅₀
 - Green algae 96-hr IC₅₀

- Fish Chronic toxicity value (ChV)
- Daphnid ChV
- Green algae ChV
- Weight of evidence and best available science are used in TSCA chemical assessments
 - Review chemical structure, physicochemical and fate properties, and structural alerts
 - Review submitted test data for the submitted substance
 - Search for measured hazard data for appropriate analogues of the new chemical
 - Ecological Structure Activity Relationships (ECOSAR) Predictive Model

Environmental Hazard Assessment Purpose (continued)

Use acute and chronic toxicity endpoint values (*i.e.,* LC₅₀, EC₅₀, ChV) to identify potential aquatic hazard concern levels

Hazard Concern Level	Ecotox Rating	Acute Endpoints	Chronic Endpoints
Low	1	≥100 mg/L	≥10 mg/L
Moderate	2	1 to <100 mg/L	0.1 to <10 mg/L
High	3	< 1 mg/L	< 0.1 mg/L

- Identify the environmental Hazard Concern Level and Ecotox Rating
 - An Ecotox Rating of 2 or 3 will require quantification of environmental exposure and risk
 - Environmental exposure (via water) is also quantified when there is human health concern for drinking water or fish ingestion, even when the Ecotox Rating is 1.
- Derive acute and chronic concentrations of concern (COC)
 - Harm to the aquatic environment may occur if the COC is exceeded

Environmental Risk Assessment Approach

- EPA evaluates environmental risk by comparing the acute and chronic COCs to potential environmental concentrations (PECs) of the chemical
 - PEC information is provided in the Exposure assessment generated using the E –FAST exposure model (<u>https://www.epa.gov/tsca-screening-</u> <u>tools/e-fast-exposure-and-fate-assessment-screening-tool-version-2014</u>)
- (If there are no exposures, no need for risk calculation)
- Evaluation of environmental **risk** from **acute aquatic exposure**
 - EPA compares acute COCs directly to the PECs using the Risk Quotient method
 - Potential for risk from acute exposure exists if the PEC > acute COC

Hazard x Exposure = Risk

Environmental Risk Assessment Approach (continued)

- Evaluation of environmental risk from chronic aquatic exposure
 - If the PEC is greater than the **chronic** COC, then potential chronic risk may exist.
 - Aquatic risk from chronic exposures is further evaluated by determining the number of days per year that the estimated PEC exceeds the chronic COC.

Evaluation of environmental risk from soil/sediment exposures

 Acute and chronic risks to soil and/or sediment-dwelling organisms are assessed by EPA when physical-chemical and fate properties indicate that the new chemical substance will partition into soils and/or sediments

HUMAN HEALTH ASSESSMENT

Human Health Hazard Assessment: Purpose

- Identify/Characterize the following:
 - Absorption by exposure routes based on experimental data or physicochemical properties for the new chemical or an analogue
 - Hazards associated with the new chemical substance based on the following:
 - Data provided in the notification
 - Analogues for informing the identification of potential hazards
 - Analogue search conducted for every submission
 - Structural alerts, physicochemical and fate properties
 - Metabolites and/or hydrolysis products
 - Relevant routes of exposure (e.g., dermal, inhalation, fish ingestion, and/or drinking water)
 - Determine if the data are suitable for the identification of a point of departure (e.g., NOAEL, LOAEL, or BMDL) for quantitative risk estimation, or if they can be used for qualitative risk estimation

Human Health Risk Assessment: Overall Approach

- Risk characterization is part of the risk assessment and takes the form of a conclusion about the chemical substance's potential for health risk.
- It embodies the effects of potential concern, the route and magnitude of potential exposure, and the population estimated to be exposed.

Human Health Risk Assessment: Quantitative Approach

- If a point of departure (POD) is identified during the human health hazard/toxicity data review, then risks are quantified.
- Risks are generally calculated using the Margin of Exposure (MOE) approach.
- The MOEs are then compared to a benchmark MOE to determine if potential risks are present.
- Potential risks are identified if the calculated MOE is below the benchmark MOE.

Human Health Risk Assessment: Quantitative Approach (continued)

- The benchmark MOE is obtained by multiplying together the uncertainty factors (UFs) associated with each POD.
- These UFs typically include:
 - 1. The variation in susceptibility among members of the human population (i.e., inter-individual or intraspecies variability or UF_{H} = default of 10),
 - 2. The uncertainty in extrapolating animal data to humans (i.e., interspecies uncertainty or UF_A = default of 10)
 - 3. An additional UF may be added if the POD is based on a LOAEL, rather than a NOAEL (i.e., LOAEL-to-NOAEL extrapolation or $UF_{L} = 10$)
 - Benchmark MOEs are typically 100 or 1000

Human Health Risk Assessment: Quantitative Approach (continued)

- EPA may refine the risk calculations based on:
 - Absorption (e.g., measured data vs prediction)
 - If relevant, % of chemical substance that represents the structural alert for hazard.
 - e.g., if the hazard identified for a polymer is due to a particular moiety that is 2% of the molecular weight of the polymer, then the exposure may be adjusted to 2% of the total estimated dose and risk estimated accordingly.
 - Specific data are available to justify changes to UFs

Human Health Risk Assessment: Qualitative Approach

- In some cases, hazards are identified based on a structural alert, which need to be supported by experimental scientific evidence.
- If data are not available to derive a quantitative POD, a qualitative approach may be considered.
- In such cases, if there are populations that may be exposed, EPA may qualitatively identify a potential hazard and consider whether data are sufficient for a reasoned evaluation.
- Examples:
 - Skin and respiratory sensitization
 - Skin and eye irritation

Human Health Risk Assessment: Insufficient Data

 When there are no quantitative hazard information available on the new chemical substance for certain hazards (e.g., cancer) and exposures are expected, EPA cannot perform a reasoned evaluation of potential risks and will generally request testing on the new chemical substance, unless exposures for the relevant route(s) can be eliminated or mitigated. NCD Risk Assessment / Management review process

Office of Chemical Safety and Pollution Prevention

Questions?

Thank You!

Contact me: cox.jamesw@epa.gov