
Maryland Biological Stressor Identification Process (2014)

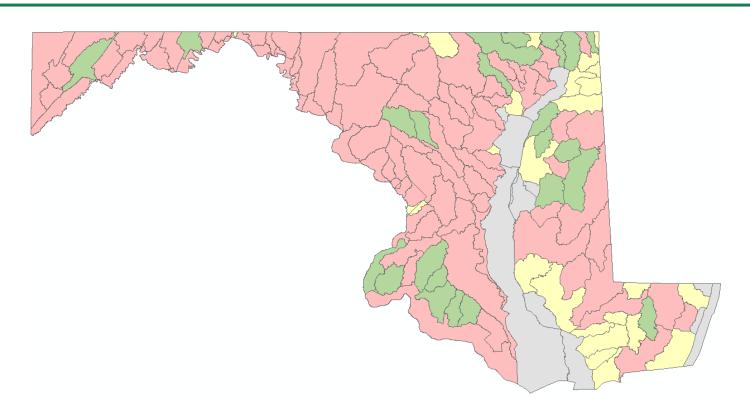
06/04/2024

MD BSID

History

- First developed in 2009
- Updated in 2014
 - Studies published around 2016

Data


- Maryland Biological Stream Survey:
 - 1st to 4th order non-tidal streams
 - Benthic macroinvertebrates
 - Fish
 - Water chemistry
 - Instream habitat
 - Riparian habitat
- Altitude
- Land use

$$n = 1,284$$

- Impervious surface
- State Roads

2014 Biological Assessment Results

MD BSID

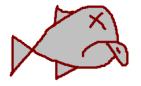
Goal

- Compare biology to stressor levels
- Using case-control statistics: Mantel-Haenszel Odds Ratios
- Samples are categorized into groups, then numbers in each group are compared
- Sites are categorized by:

- Biology: 😧 or 😟

- Stressor: ↑ or ↓

- Physiographic region and stream order


Data from R2 (2000-2004) and R3 (2007-2009)

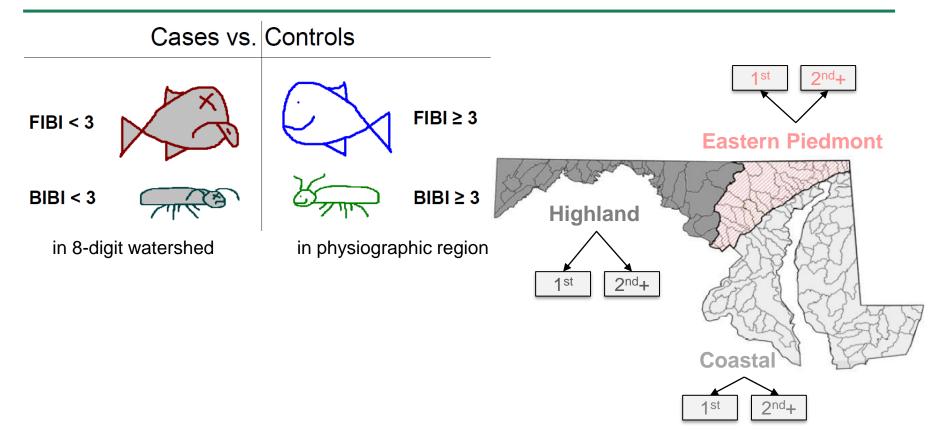
Biology Categories

Cases vs. Controls

FIBI < 3

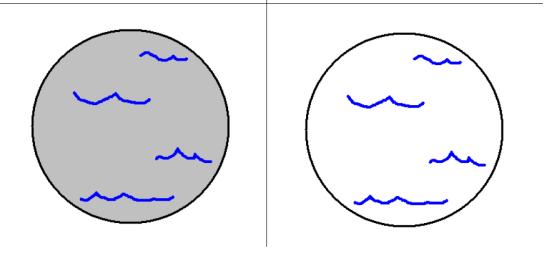
FIBI ≥ 3

BIBI < 3



BIBI ≥ 3

Narrative Rating	IBI Score Range
Good	4.0 - 5.0
Fair	3.0 - 3.9
Poor	2.0 - 2.9
Very Poor	1.0 – 1.9

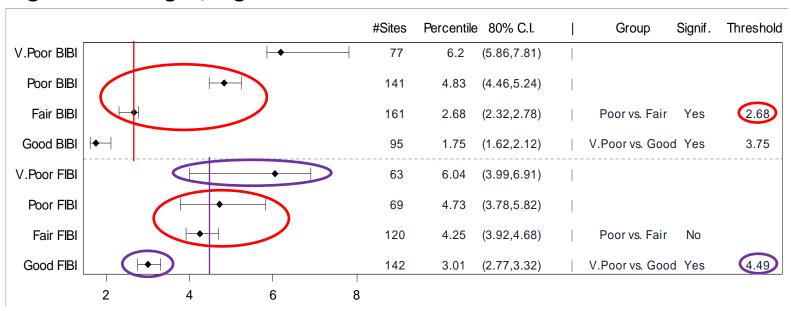

Biology Categories

Stressor Categories

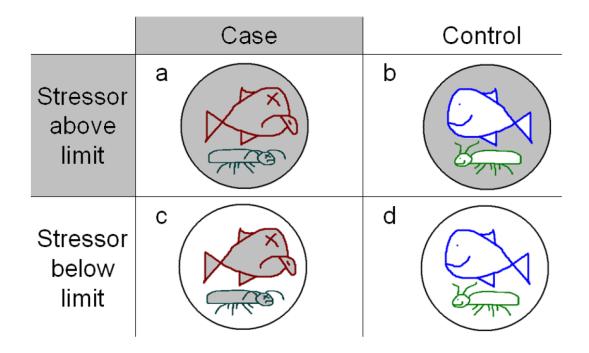
Stressor above limit vs. Stressor below limit

- Source:
 - Acidity
 - Agricultural
 - Anthropogenic
 - Impervious
 - Urban
- Stressor:
 - Sediment
 - Habitat (instream & riparian)
 - Chemistry (inorganic, nutrients, and pH)

Parameter Thresholds


Each parameter was assigned a stressor threshold per eco-region, based on:

- Existing guidelines: COMAR, literature, MDDNR MBSS
- Statistical analysis on grouped responses → indicate levels above which degradation to biological communities is likely to occur
 - Compared stressor levels among different biological conditions: sites pooled into each narrative
 IBI category and stratified by ecoregion
 - Graphs displaying 80% confidence intervals of grouped percentile distributions and statistical significance tested


Parameter Thresholds

High Total Nitrogen, Highland

MD BSID – Contingency Tables

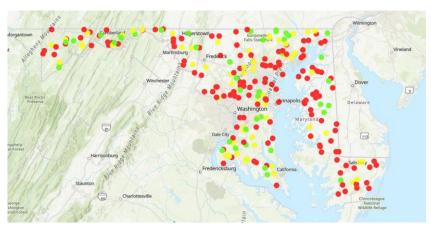
Two-way contingency table for every:

- Stressor
- Watershed

MD BSID – Odds Ratio

Odds Ratio =
$$\frac{ad}{bc}$$
 =

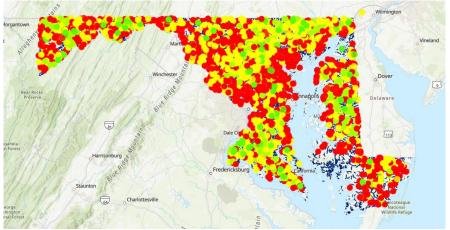
If >1, the result is significant, and stressor is likely to be impacting biology


MD BSID – Attributable Risk

The portion of the sites with poor to very poor biological conditions as a result of the stressor

$$AR = \left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) - \left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$

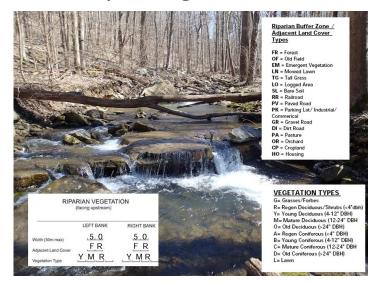
Also combined by categories of stressors and sources.

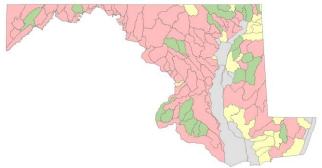


Images:

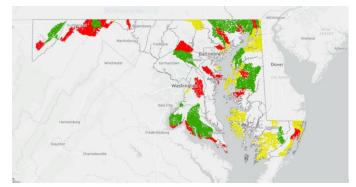
MBSS- Biological Stream Survey Random Sites (2021-2023)- Top MBSS- Biological Stream Survey Sites (1995-2023)- Right

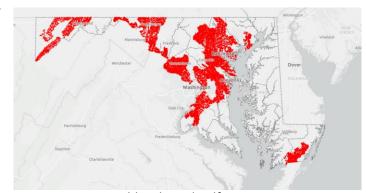
https://maryland.maps.arcgis.com/apps/webappviewer/index.html?id=30ee9336f8d54e4e bf971c3a1a7576ed


- Sampling efforts have not remained the same over time
- Sampling methodology has changed

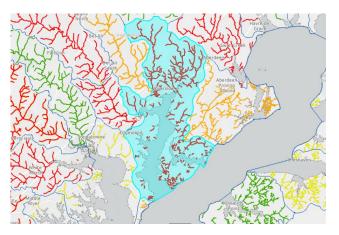

MBSS SUMMER HABITAT DATA SHEET $_{\it lage}$ \square $_{\it al}$								
SITE CODE Set	pment Type Year Ha	Reviewer: First Second						
BANK EROSION Let Bank Right Bank Estent (m) Severity 1 = mind 2 = none 1 = mind 3 = severe Substract Substract Conce 1 = none Gravet 3 = severe Since Substract Conce 1 = none Gravet 3 = severe Since Substract Gravet 3 = severe Since Substract Gravet 3 = severe Since Substract Gravet Gravet Since Substract Gravet Grave	HABITAT ASSESSMENT 1. Instream Habitat (0-20)	Lat. Loc. (m) PLOW Deght (cm) Velocity (m Lot. Loc. (m) Deght (cm) Velocity (m Lot. Loc. (m) Lot. Loc. (m) Deght (cm) Velocity (m Lot. Loc. (m) Lot. Loc. (m) Deght (cm) D						
Braided	### Boulder >2m							
Woody Debris No. of Instream Woody Debris No. of Dewatered Woody Debris No. of Instream Rootwads No. of Dewatered Rootwads	Maximum Depth (cm)	Alternative Flow Measurements Distance (em) Depth (em) With (em) Time (sec) 1 2 3.						

- Subjective parameters
- Additional stressors that are not currently being collected




- Scale of the assessment does not help with targeting more degraded areas

MDE Biological Assessment 2014


MDE Biological (Cause Unknown) Assessments

MDE Chloride and Sulfate Impairments

- Updating the Biological Assessment
- Stressors vs. Biology

AU ID	Basin Name	AU Size	Designated Use	Listing Category	Cause	Percent Attributable Risk
MD-02130701	Bush River	102.81	Aquatic Life and Wildlife	4c	Habitat Alterations	59.00%
MD-02130701	Bush River	102.81	Aquatic Life and Wildlife	4c	Riparian Buffer, Lack of	75.00%
MD-02130701	Bush River	102.81	Aquatic Life and Wildlife	5	Total Suspended Solids (TSS)	31.00%
MD-02130701	Bush River	102.81	Aquatic Life and Wildlife	5s	Chloride	95.00%
MD-02130701	Bush River	102.81	Aquatic Life and Wildlife	2	Sulfate	

MD BSID- Next Steps

Work with ICPRB to update current process:

- Incorporate toxics into methodology
- Evaluate changing the scale

MS4 and DNR work

- Update the Biological Assessment
- Standardize sampling method
- Vet jurisdiction data to incorporate into the assessment

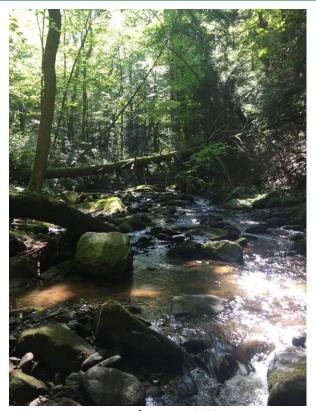
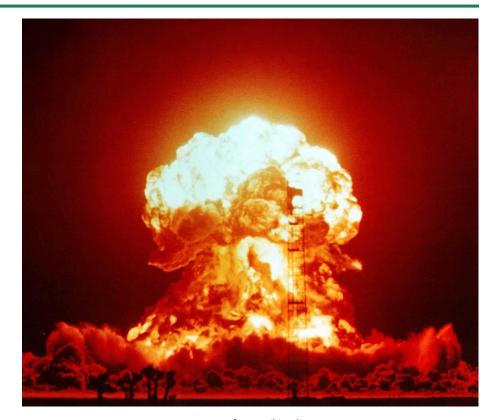


Image from MDE, 2008



Remaining Questions

We could use your help!

If we change- does it blow up the process?

- Scale
- Assessment Units
- Updating Assessments
- Delisting
- Random vs. Targeted Sampling
- BSID Threshold Updates
- BSID Changes Over Time

Questions?

Contact Info:

Bel Martinez da Matta

maria.martinezdamatta@maryland.gov

Becky Monahan

becky.monahan@maryland.gov